WhoCites Definitions mb state machine Sections GenAutomata Doc

Who Cites sm all?
sm_all Def i:I M(i) == mk_sm(M(i).da for i I, M(i).ds for i I, s.i:I. M(i).init(s), s1,a,s2. i:I. M(i).trans(s1,a,s2))
dall Def D(i) for i I(x) == i:I. D(i)(x)
Thm* I:Type, D:(IDecl). D(i) for i I Decl
sm Def sm{i:l}() == da:Declds:Decl({ds}Prop)({ds}(da){ds}Prop)
Thm* sm{i:l}() Type{i'}
sm_action Def M.action == (M.da)
Thm* M:sm{i:l}(). M.action Type
sigma Def (d) == l:Labeldecl_type(d;l)
Thm* d:Decl. (d) Type
sm_da Def t.da == 1of(t)
Thm* t:sm{i:l}(). t.da Decl
record Def {d} == l:Labeldecl_type(d;l)
Thm* d:Decl. {d} Type
decl_type Def decl_type(d;x) == d(x)
Thm* dec:Decl, x:Label. decl_type(dec;x) Type
decl Def Decl == LabelType
Thm* decl{i:l} Type{i'}
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
sm_trans Def t.trans == 2of(2of(2of(t)))
Thm* M:sm{i:l}(). M.trans M.stateM.actionM.stateProp
sm_init Def t.init == 1of(2of(2of(t)))
Thm* M:sm{i:l}(). M.init M.stateProp
sm_ds Def t.ds == 1of(2of(t))
Thm* t:sm{i:l}(). t.ds Decl
mk_sm Def mk_sm(da, ds, init, trans) == < da,ds,init,trans >
Thm* da,ds:Decl, init:({ds}Prop), trans:({ds}(da){ds}Prop). mk_sm(da, ds, init, trans) sm{i:l}()
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertintnatural_numberatomtokenuniondecide
setisectlambdaapplyfunctionrecursive_def_notice
recuniversememberpropimpliesfalsetrueall!abstraction

WhoCites Definitions mb state machine Sections GenAutomata Doc