Who Cites message str? | |
message_str | Def MessageStruct == M:TypeC:DecidableEquiv(M|C|)(MLabel)(M)Top |
Thm* MessageStruct Type{i'} | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
dequiv | Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top |
Thm* DecidableEquiv Type{i'} | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
carrier | Def |S| == 1of(S) |
Thm* S:Structure. |S| Type | |
msg_eq | Def =(M)(m_1,m_2) == ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2) (uid(M)(m_1)=uid(M)(m_2)) |
Thm* M:MessageStruct. =(M) |M||M| | |
eq_dequiv | Def =(DE) == 1of(2of(DE)) |
Thm* E:DecidableEquiv. =(E) |E||E| | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y) |
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop | |
msg_content | Def content(MS) == 1of(2of(2of(MS))) |
Thm* M:MessageStruct. content(M) |M||cEQ(M)| | |
msg_content_eq | Def cEQ(MS) == 1of(2of(MS)) |
Thm* M:MessageStruct. cEQ(M) DecidableEquiv | |
msg_id | Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) |
Thm* M:MessageStruct. uid(M) |M| | |
msg_sender | Def sender(MS) == 1of(2of(2of(2of(MS)))) |
Thm* M:MessageStruct. sender(M) |M|Label | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop | |
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a) |
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop | |
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop | |
top | Def Top == Void given Void |
Thm* Top Type | |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type |
About: