Thms myhill nerode Sections AutomataTheory Doc

lquo_rel Def Rg(x,y) == z:A*. (g(z@x)) (g(z@y))

Thm* A:Type, R:(A*A*Prop). (EquivRel x,y:A*. x R y) (x,y,z:A*. (x R y) ((z @ x) R (z @ y))) (g:((x,y:A*//(x R y))). Rg (x,y:A*//(x R y))(x,y:A*//(x R y))Prop)

mn_quo_append Def z@x == z @ x

Thm* A:Type, R:(A*A*Prop). (EquivRel x,y:A*. x R y) (x,y,z:A*. (x R y) ((z @ x) R (z @ y))) (z:A*, y:x,y:A*//(x R y). z@y x,y:A*//(x R y))

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

decidable Def Dec(P) == P P

Thm* A:Prop. Dec(A) Prop

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

assert Def b == if b True else False fi

Thm* b:. b Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

About:
!abstractionimpliesallpropmemberequalapply
universefunctionexistsandifthenelsetruefalse
boolassertless_thanintsetnatural_numberor
recursive_def_noticelist_indconslistquotient