At: mn 23 lem 1 2 2 1 3 1
1. Alph: Type
2. R: Alph*
Alph*
Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y) 
((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))


8. Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
9.
a:Alph, x:x,y:Alph*//(x R y). a.x
x,y:Alph*//(x R y)
10. fL: ((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
11.
t:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))).
(
x.x/x1,x2.
(g(x1)) =
(g(x2)))(t) 
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y));t;fL)
12. < (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,xy. xy/x,y. < a.x,a.y > >
ActionSet(Alph)
Fin( < (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,xy. xy/x,y. < a.x,a.y > > .car)
By:
Unfold `aset_car` 0
THEN
Reduce 0
THEN
NthHyp 8
Generated subgoals:None
About: