At: mn  23  lem 1 2 2 1 3 1
1. Alph: Type
2. R: Alph*
 Alph*
Alph*
 Prop
Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6.  x,y,z:Alph*. (x R y)
x,y,z:Alph*. (x R y) 
 ((z @ x) R (z @ y))
 ((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))


8. Fin((x,y:Alph*//(x R y)) (x,y:Alph*//(x R y)))
(x,y:Alph*//(x R y)))
9.  a:Alph, x:x,y:Alph*//(x R y). a.x
a:Alph, x:x,y:Alph*//(x R y). a.x  x,y:Alph*//(x R y)
 x,y:Alph*//(x R y)
10. fL: ((x,y:Alph*//(x R y)) (x,y:Alph*//(x R y)))*
(x,y:Alph*//(x R y)))*
11.  t:((x,y:Alph*//(x R y))
t:((x,y:Alph*//(x R y)) (x,y:Alph*//(x R y))). 
(
(x,y:Alph*//(x R y))). 
( x.x/x1,x2.
x.x/x1,x2.
 (g(x1)) =
(g(x1)) = (g(x2)))(t)
 (g(x2)))(t) 
 mem_f((x,y:Alph*//(x R y))
 mem_f((x,y:Alph*//(x R y)) (x,y:Alph*//(x R y));t;fL)
(x,y:Alph*//(x R y));t;fL)
12.  < (x,y:Alph*//(x R y)) (x,y:Alph*//(x R y)),
(x,y:Alph*//(x R y)), a,xy. xy/x,y. < a.x,a.y >  >
a,xy. xy/x,y. < a.x,a.y >  >   ActionSet(Alph)
 ActionSet(Alph)
  Fin( < (x,y:Alph*//(x R y))
 Fin( < (x,y:Alph*//(x R y)) (x,y:Alph*//(x R y)),
(x,y:Alph*//(x R y)), a,xy. xy/x,y. < a.x,a.y >  > .car)
a,xy. xy/x,y. < a.x,a.y >  > .car)
By: 
Unfold `aset_car` 0
THEN
Reduce 0
THEN
NthHyp 8
Generated subgoals:None
About: