PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: mn 23 lem 1 2 2 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))
8. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))
9. a:Alph, x:x,y:Alph*//(x R y). a.x x,y:Alph*//(x R y)
10. fL:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*. t:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))). (x.x/x1,x2.(g(x1)) = (g(x2)))(t) mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));t;fL)

x,y:x,y:Alph*//(x R y). Dec(x Rg y)

By: Assert ( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph)) THENA Unfold `action_set` 0

Generated subgoals:

111. a: Alph
12. xy: (x,y:Alph*//(x R y))(x,y:Alph*//(x R y))
13. x: x,y:Alph*//(x R y)
14. y: x,y:Alph*//(x R y)
15. xy = < x,y >
a.x x,y:Alph*//(x R y)
211. a: Alph
12. xy: (x,y:Alph*//(x R y))(x,y:Alph*//(x R y))
13. x: x,y:Alph*//(x R y)
14. y: x,y:Alph*//(x R y)
15. xy = < x,y >
a.y x,y:Alph*//(x R y)
311. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph)
x,y:x,y:Alph*//(x R y). Dec(x Rg y)


About:
allquotientlistmemberpairproduct
lambdaspreadconsuniversefunctionprop
impliesboolexistsassertapply