At: mn 23 lem 1111211222211 1. Alph: Type 2. R: Alph*Alph*Prop 3. Fin(Alph) 4. EquivRel x,y:Alph*. x R y 5. Fin(x,y:Alph*//(x R y)) 6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y)) 7. g: (x,y:Alph*//(x R y)) 8. x: x,y:Alph*//(x R y) 9. y: x,y:Alph*//(x R y) 10. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,p. p/x,y. < a.x,a.y > > ActionSet(Alph) 11. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))) 12. x:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))), y:Alph*.
( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,p. p/x,y. < a.x,a.y > > :yx) = (x/x1,x2. < y@x1,y@x2 > ) 13. RL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 14. s:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
(w:Alph*. ( < x,y > /x1,x2. < w@x1,w@x2 > ) = s) mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));s;RL)
Dec(x@0:Alph*. (g(x@0@x)) = (g(x@0@y)) = false) By: Assert
((x@0:Alph*. (g(x@0@x)) = (g(x@0@y)) = false)
(p:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
(p/p1,p2.(g(p1)) = (g(p2))) = false & mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));p;RL))) Generated subgoals: