At: total back listify 1 1 2 2 1 2 2 1
1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. Fin(S.car)
6. n: 
7. 0 < n
8. TBL: S.car*
9. ||TBL|| = n-1

10.
i:
||TBL||, j:
i.
TBL[i] = TBL[j]
11.
s:S.car. mem_f(S.car;s;TBL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL))
12. AL: S.car*
13.
s:S.car. False 
(
w:Alph*. mem_f(S.car;(S:w
s);sL))
14.
s:S.car. mem_f(S.car;s;sL) 
mem_f(S.car;s;TBL)
False
15.
s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) 
mem_f(S.car;s;TBL)
False
16. s: S.car
17. w: Alph*
18. mem_f(S.car;(S:w
s);sL)
19.
i:
. i
||w|| 
mem_f(S.car;(S:nth_tl(i;w)
s);TBL)
20. mem_f(S.car;(S:nth_tl(||w||;w)
s);TBL)
mem_f(S.car;s;TBL)
By: Assert (nth_tl(||w||;w) = nil)
THENL
[BackThru
Thm*
L:T*. ||L||
0 
L = nil
;(RWH (HypC -1) -2) THEN (RecUnfold `maction` -2) THEN (Reduce -2)]
Generated subgoals:None
About: