PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: total back listify 1 1 2 2 1 2 2 1

1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. Fin(S.car)
6. n:
7. 0 < n
8. TBL: S.car*
9. ||TBL|| = n-1
10. i:||TBL||, j:i. TBL[i] = TBL[j]
11. s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))
12. AL: S.car*
13. s:S.car. False (w:Alph*. mem_f(S.car;(S:ws);sL))
14. s:S.car. mem_f(S.car;s;sL) mem_f(S.car;s;TBL) False
15. s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) mem_f(S.car;s;TBL) False
16. s: S.car
17. w: Alph*
18. mem_f(S.car;(S:ws);sL)
19. i:. i||w|| mem_f(S.car;(S:nth_tl(i;w)s);TBL)
20. mem_f(S.car;(S:nth_tl(||w||;w)s);TBL)

mem_f(S.car;s;TBL)

By: Assert (nth_tl(||w||;w) = nil) THENL [BackThru Thm* L:T*. ||L||0 L = nil ;(RWH (HypC -1) -2) THEN (RecUnfold `maction` -2) THEN (Reduce -2)]

Generated subgoals:

None


About:
equallistniluniverseintless_thannatural_number
subtractallimpliesexistsfalseorapply