PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd auto eq auto 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. Fin(St)
5. x,y:St, a:Alph. Dec(NDA(x,a,y))
6. y:St. Dec(I(NDA) = y)
7. g: St
8. t:St. I(NDA) = t g(t)
9. f:(St). Dec(s:St. f(s) & F(NDA)(s))
10. g1: (St)
11. t:(St). (s:St. t(s) & F(NDA)(s)) g1(t)
12. f:(St), a:Alph, y:St. Dec(s:St. f(s) & NDA(s,a,y))
13. g2: (St)AlphSt
14. t:((St)AlphSt). (s:St. 1of(t)(s) & NDA(s,1of(2of(t)),2of(2of(t)))) g2(t)
15. g0: (St)AlphSt
16. ds:(St), a:Alph, y:St. (s:St. ds(s) & NDA(s,a,y)) g0(ds,a,y)
17. l: Alph*

L(NDA)(l) LangOf( < g0,g,g1 > )(l)

By: Assert ( < g0,g,g1 > Automata(Alph;St)) THENA Unfold `automata` 0

Generated subgoal:

118. < g0,g,g1 > Automata(Alph;St)
L(NDA)(l) LangOf( < g0,g,g1 > )(l)


About:
applypairmemberfunctionbooluniverseall
equalassertexistsandproductlist