PrintForm
Definitions
nfa
1
Sections
AutomataTheory
Doc
At:
nd
auto
eq
auto
1
1
2
1
1
1
1
1
2
2
1
1
2
2
1
1
2
1
2
1
1
1.
Alph:
Type
2.
St:
Type
3.
NDA:
NDA(Alph;St)
4.
Fin(St)
5.
x,y:St, a:Alph. Dec(
NDA(x,a,y))
6.
y:St. Dec(I(NDA) = y)
7.
g:
St
8.
t:St. I(NDA) = t
g(t)
9.
f:(St
). Dec(
s:St. f(s) & F(NDA)(s))
10.
g1:
(St
)
11.
t:(St
). (
s:St. t(s) & F(NDA)(s))
g1(t)
12.
f:(St
), a:Alph, y:St. Dec(
s:St. f(s) &
NDA(s,a,y))
13.
g2:
(St
)
Alph
St
14.
t:((St
)
Alph
St). (
s:St. 1of(t)(s) &
NDA(s,1of(2of(t)),2of(2of(t))))
g2(t)
15.
g0:
(St
)
Alph
St
16.
ds:(St
), a:Alph, y:St. (
s:St. ds(s) &
NDA(s,a,y))
g0(ds,a,y)
17.
l:
Alph*
L(NDA)(l)
LangOf( < g0,g,g1 > )(l)
By:
Assert ( < g0,g,g1 >
Automata(Alph;St
)) THENA Unfold `automata` 0
Generated subgoal:
1
18.
< g0,g,g1 >
Automata(Alph;St
)
L(NDA)(l)
LangOf( < g0,g,g1 > )(l)
About: