Thms nfa 1 Sections AutomataTheory Doc

nd_comp_extend Def C+[a;q] == map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ]

Thm* Alph,St:Type, C:NComp(Alph;St), a:Alph, q:St. C+[a;q] NComp(Alph;St)

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

map Def map(f;as) == Case of as; nil nil ; a.as' f(a).map(f;as') (recursive)

Thm* A,B:Type, f:(AB), l:A*. map(f;l) B*

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

About:
recursive_def_notice!abstractionlist_indconsalluniverselistmember
nilapplyfunctionspreadproductlambdapair