PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd comp extend wf 1 2 1 2 1 1

1. Alph: Type
2. St: Type
3. C: {C:{l:((StAlph*)*)| ||l|| > 0 }| i:(||C||-1). ||2of(C[i])|| > 0 }
4. a: Alph
5. q: St
6. i:
7. 0 i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1

||2of(map(c. < 1of(c),a.2of(c) > ;C)[i])|| > 0

By: RWH (LemmaC Thm* f:(AB), as:A*, n:||as||. map(f;as)[n] = f(as[n])) 0

Generated subgoals:

17. 0i
8. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
i < ||C||
2 ||2of((c. < 1of(c),a.2of(c) > )(C[i]))|| > 0


About:
lambdapairconsnatural_numberuniverseallfunctionlist
equalapplysetproductsubtractintaddless_than