PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 2 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)

1of(hd(rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]))) = p

By: RWH (LemmaC Thm* as,bs:T*. rev(as @ bs) = (rev(bs) @ rev(as))) 0

Generated subgoals:

1 ||rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])||1
2 1of(hd((rev([ < p,nil > ]) @ rev(map(c. < 1of(c),a.2of(c) > ;C))))) = p


About:
equallambdapairconsniluniverse
alllistproductnatural_numbersubtractapply