PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: NComp(Alph;St)
5. q: St
6. a: Alph
7. p: St
8. NDA(C) q
9. NDA(q,a,p)

(i:(||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1). NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i])))) Alph*) & 1of(hd(rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]))) = p & 2of(hd(rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]))) = nil Alph*

By: Analyze 0

Generated subgoals:

1 i:(||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1). NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i])))) Alph*
2 1of(hd(rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]))) = p & 2of(hd(rev(map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]))) = nil Alph*


About:
andallnatural_numbersubtractlambdapaircons
nilapplyaddequallistuniverse