PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: NComp(Alph;St)
5. q: St
6. a: Alph
7. p: St
8. NDA(C) q
9. NDA(q,a,p)

i:(||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1). NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i])))) Alph*

By:
Analyze 4
THEN
Analyze 4


Generated subgoal:

14. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
i:(||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1). NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))))


About:
allnatural_numbersubtractlambdapairconsnil
andapplyaddequallistuniverse