PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)

i:(||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1). NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))))

By: Analyze 0

Generated subgoal:

112. i: (||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||-1)
NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)])) & 2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))))


About:
allnatural_numbersubtractlambdapairconsnil
andapplyaddequallistuniverseproduct