Thm* n:. CoPrime(fib(n),fib(n+1)) | [fib_coprime] |
Thm* n:. fib(n) | [fib_wf] |
Thm* r:, s:{s':| CoPrime(r,s') }, a,b:.
Thm* x:. ((x = a mod r) & (x = b mod s)) | [chrem_exists_a] |
Thm* r,s:. CoPrime(r,s) (a,b:. x:. (x = a mod r) & (x = b mod s)) | [chrem_exists] |
Thm* r:, s:{s':| CoPrime(r,s') }. x:. ((x = 1 mod r) & (x = 0 mod s)) | [chrem_exists_aux_a] |
Thm* r,s:. CoPrime(r,s) (x:. (x = 1 mod r) & (x = 0 mod s)) | [chrem_exists_aux] |
Thm* m,a,a',b,b':. (a = a' mod m) (b = b' mod m) ((ab) = (a'b') mod m) | [multiply_functionality_wrt_eqmod] |
Thm* m,a,a',b,b':. (a = a' mod m) (b = b' mod m) ((a+b) = (a'+b') mod m) | [add_functionality_wrt_eqmod] |
Thm* m,a,a',b,b':.
Thm* (a = a' mod m) (b = b' mod m) ((a = b mod m) (a' = b' mod m)) | [eqmod_fun] |
Thm* m,m',a,a',b,b':.
Thm* m = m'
Thm*
Thm* (a = a' mod m) (b = b' mod m) ((a = b mod m) (a' = b' mod m')) | [eqmod_functionality_wrt_eqmod] |
Thm* m,a,b:. (a = b mod m) (b = a mod m) | [eqmod_inversion] |
Thm* m,a,b,c:. (a = b mod m) (b = c mod m) (a = c mod m) | [eqmod_transitivity] |
Thm* m,a,b:. a = b (a = b mod m) | [eqmod_weakening] |
Thm* p:. prime(p) (a1,a2:. p | a1a2 p | a1 p | a2) | [prime_divs_prod] |
Thm* a:. atomic(a) prime(a) | [atomic_imp_prime] |
Thm* a1,a2,b:. CoPrime(a1,a2) a1 | b a2 | b a1a2 | b | [coprime_divisors_prod] |
Thm* a,b1,b2:. CoPrime(a,b1) CoPrime(a,b2) CoPrime(a,b1b2) | [coprime_prod] |
Thm* a,b:. CoPrime(a,b) (x,y:. ax+by = 1) | [coprime_bezout_id] |
Thm* a,b:. (x,y:. ax+by = 1) CoPrime(a,b) | [coprime_bezout_id2] |
Thm* a,b:. CoPrime(a,b) (x,y:. ax+by = 1) | [coprime_bezout_id1] |
Thm* a,b:. CoPrime(a,b) (x,y:. (ax+by) ~ 1) | [coprime_bezout_id0] |
Thm* a,p:. prime(p) (CoPrime(p,a) p | a) | [coprime_iff_ndivides] |
Thm* a,b:. CoPrime(a,b) (gcd(a;b) ~ 1) | [coprime_elim_a] |
Thm* a,b:. CoPrime(a,b) (c:. c | a c | b (c ~ 1)) | [coprime_elim] |
Thm* a,b:. (c:. c | a c | b c | 1) CoPrime(a,b) | [coprime_intro] |
Thm* p:. prime(p) p = 0 & (p ~ 1) & (a:. a | p (a ~ 1) (a ~ p)) | [prime_elim] |
Thm* a:. prime(a) atomic(a) | [prime_imp_atomic] |
Thm* a:, b:. ab | a (b ~ 1) | [self_divisor_mul] |
Thm* a:. atomic(a) (a ~ 1) & (b:. b | a (b ~ 1) (b ~ a)) | [atomic_char] |
Thm* i,j:. SqStable(CoPrime(i,j)) | [sq_stable__coprime] |
Thm* a,b,c:. gcd(gcd(a;b);c) ~ gcd(a;gcd(b;c)) | [gcd_assoc] |
Thm* a,b,n:. (ngcd(a;b)) ~ gcd(na;nb) | [gcd_mul] |
Thm* a,b,y,n:. GCD(a;b;y) GCD(na;nb;ny) | [gcd_p_mul] |
Thm* a,b:. u,v:. GCD(a;b;ua+vb) | [bezout_ident] |
Thm* b:, a:. u,v:. GCD(a;b;ua+vb) | [bezout_ident_n] |
Thm* a,b:. y:. GCD(a;b;y) | [gcd_exists] |
Thm* b:, a:. y:. GCD(a;b;y) | [gcd_ex_n] |
Thm* b:, a:. y:. GCD(a;b;y) | [gcd_exists_n] |
Thm* a:, b:. q:, r:b. a = qb+r | [quot_rem_exists] |
Thm* a:, b:. q:, r:b. a = qb+r | [quot_rem_exists_n] |
Thm* a,b,c:. c | a c | b c | gcd(a;b) | [gcd_is_gcd] |
Thm* a,b:. gcd(a;b) | b | [gcd_is_divisor_2] |
Thm* a,b:. gcd(a;b) | a | [gcd_is_divisor_1] |
Thm* a,b:. gcd(a;b) ~ gcd(b;a) | [gcd_sym] |
Thm* a,b:. y:. GCD(a;b;y) & gcd(a;b) = y | [gcd_elim] |
Thm* a,b:. GCD(a;b;gcd(a;b)) | [gcd_sat_pred] |
Thm* a,b:. GCD(a;b;gcd(a;b)) | [gcd_sat_gcd_p] |
Thm* a,b:. gcd(a;b) | [gcd_wf] |
Thm* a,b,c,x,y:.
Thm* GCD(a;b;x)
Thm*
Thm* GCD(x;c;y)
Thm*
Thm* y | a & y | b & y | c & (z:. z | a z | b z | c z | y) | [gcd_of_triple] |
Thm* a,b,y1,y2:. GCD(a;b;y1) GCD(a;b;y2) (y1 ~ y2) | [gcd_unique] |
Thm* a,b,y,k:. GCD(a;b;y) GCD(a;b+ka;y) | [gcd_p_shift] |
Thm* a,b,y:. GCD(a;b;y) GCD(a;-b;y) | [gcd_p_neg_arg_2] |
Thm* a,b,y:. GCD(a;b;y) GCD(-a;b;y) | [gcd_p_neg_arg_a] |
Thm* a,b,y:. GCD(a;b;y) GCD(a;-b;y) | [gcd_p_neg_arg] |
Thm* a,b,y:. GCD(a;b;y) GCD(b;a;y) | [gcd_p_sym_a] |
Thm* a,b,y:. GCD(a;b;y) GCD(b;a;y) | [gcd_p_sym] |
Thm* a,b:. GCD(a;0;b) a = b a = -b | [gcd_p_zero_rel] |
Thm* a:. GCD(a;1;1) | [gcd_p_one] |
Thm* a:. GCD(a;0;a) | [gcd_p_zero] |
Thm* a:. GCD(a;a;a) | [gcd_p_eq_args] |
Thm* a,a',b,b',y,y':.
Thm* (a ~ a') (b ~ b') (y ~ y') (GCD(a;b;y) GCD(a';b';y')) | [gcd_p_functionality_wrt_assoced] |
Thm* a,b:. a | b (c:. b = ac ) | [divides_nchar] |
Thm* a:, b:. a | b & b | a a<b & a | b | [pdivisor_bound] |
Thm* a,b:. (a ~ b) a = b | [assoced_nelim] |
Thm* a:. a | 1 (a ~ 1) | [unit_chars] |
Thm* a:. |a| ~ a | [absval_assoced] |
Thm* a:. (-a) ~ a | [neg_assoced] |
Thm* a,b:, n:. ((na) ~ (nb)) (a ~ b) | [mul_cancel_in_assoced] |
Thm* a,b:. (a ~ b) a = b a = -b | [assoced_elim] |
Thm* a,b,a',b':. (a ~ a') (b ~ b') ((a ~ b) (a' ~ b')) | [assoced_functionality_wrt_assoced] |
Thm* a,a',b,b':. (a ~ a') (b ~ b') ((ab) ~ (a'b')) | [multiply_functionality_wrt_assoced] |
Thm* a,b,c:. (a ~ b) (b ~ c) (a ~ c) | [assoced_transitivity] |
Thm* a,b:. a = b (a ~ b) | [assoced_weakening] |
Thm* a,a',b,b':. (a ~ a') (b ~ b') (a | b a' | b') | [divides_functionality_wrt_assoced] |
Thm* a,b:. Dec(a | b) | [decidable__divides] |
Thm* a:, n:. n | a (a n)n = a | [divides_iff_div_exact] |
Thm* a:, b:. b | a (a rem b) = 0 | [divides_iff_rem_zero] |
Thm* a:, b:. a | b ab | [divisor_bound] |
Thm* a,b:. a | b (n:. na | nb) | [divides_mul] |
Thm* a,b,c:. a | b a | bc | [divisor_of_mul] |
Thm* a,b:. a | b a | -b | [divisor_of_minus] |
Thm* a,b1,b2:. a | b1 a | b2 a | b1+b2 | [divisor_of_sum] |
Thm* a,b:. a | b & b | a a = b | [assoc_reln] |
Thm* a,b:. a | b b | a a = b | [divides_anti_sym] |
Thm* a,b:. a | b b | a a = b | [divides_anti_sym_n] |
Thm* a,b,c:. a | b b | c a | c | [divides_transitivity] |
Thm* a:. a | a | [divides_reflexivity] |
Thm* a,b:. |a| | |b| a | b | [divides_of_absvals] |
Thm* b:. b | 1 b = 1 | [only_pm_one_divs_one] |
Thm* a:, b:. a | b ab | [divisors_bound] |
Thm* a,b:. a | b a | -b | [divides_invar_2] |
Thm* a,b:. a | b -a | b | [divides_invar_1] |
Thm* b:. b | 0 | [any_divs_zero] |
Thm* a:. 1 | a | [one_divs_any] |
Thm* a:. 0 | a a = 0 | [zero_divs_only_zero] |
Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) | [prime] |
Def GCD(a;b;y) == y | a & y | b & (z:. z | a & z | b z | y) | [gcd_p] |