| Some definitions of interest. |
|
gcd_p | Def GCD(a;b;y) == y | a & y | b & (z:. z | a & z | b z | y) |
| | Thm* a,b,y:. GCD(a;b;y) Prop |
|
divides | Def b | a == c:. a = bc |
| | Thm* a,b:. (a | b) Prop |
|
gcd | Def gcd(a;b) == if b=0 a else gcd(b;a rem b) fi (recursive) |
| | Thm* a,b:. gcd(a;b) |