PrintForm Definitions relation autom Sections AutomataTheory Doc

At: quotient of nsubn 2 1 2 1 1 2 1 1 2 1 1 1 1 4 2 1 2 1 1 2

1. n: {1+1...}
2. E:((n-1)(n-1)Prop). (EquivRel x,y:(n-1). x E y) & (x,y:(n-1). Dec(x E y)) (m:(n-1+1). m ~ (i,j:(n-1)//(i E j)))
3. E: nnProp
4. EquivRel x,y:n. x E y
5. x,y:n. Dec(x E y)
6. EquivRel x,y:(n-1). x E y
7. m: (n-1+1)
8. f: m(i,j:(n-1)//(i E j))
9. g: (i,j:(n-1)//(i E j))m
10. g o f = Id
11. f o g = Id
12. x:m. f(x) i,j:n//(i E j)
13. a:n. a E a
14. a,b:n. (a E b) (b E a)
15. a,b,c:n. (a E b) (b E c) (a E c)
16. x,y:i,j:n//(i E j). Dec(x = y)
17. Eb: (i,j:n//(i E j))(i,j:n//(i E j))
18. x,y:i,j:n//(i E j). (x Eb y) x = y
19. k: (n-1)
20. k E (n-1)
21. x: i,j:n//(i E j)
22. n-1 i,j:n//(i E j)
23. x Eb (n-1)
24. x = k i,j:n//(i E j)

(f o g)(k) = x i,j:n//(i E j)

By: HypSubst 24 0

Generated subgoals:

1 (f o g)(k) = k i,j:n//(i E j)
225. z: i,j:n//(i E j)
(f o g)(k) i,j:n//(i E j)


About:
equalquotientnatural_numberapplyaddallfunctionsubtract
propimpliesandexistsmemberboolassert