PrintForm Definitions relation autom Sections AutomataTheory Doc

At: quotient of nsubn 2 1 2 1 1 2 1 1 2 1 1 1 1 4 2 1 2 2

1. n: {1+1...}
2. E:((n-1)(n-1)Prop). (EquivRel x,y:(n-1). x E y) & (x,y:(n-1). Dec(x E y)) (m:(n-1+1). m ~ (i,j:(n-1)//(i E j)))
3. E: nnProp
4. EquivRel x,y:n. x E y
5. x,y:n. Dec(x E y)
6. EquivRel x,y:(n-1). x E y
7. m: (n-1+1)
8. f: m(i,j:(n-1)//(i E j))
9. g: (i,j:(n-1)//(i E j))m
10. InvFuns(m; i,j:(n-1)//(i E j); f; g)
11. x:m. f(x) i,j:n//(i E j)
12. a:n. a E a
13. a,b:n. (a E b) (b E a)
14. a,b,c:n. (a E b) (b E c) (a E c)
15. x,y:i,j:n//(i E j). Dec(x = y)
16. Eb: (i,j:n//(i E j))(i,j:n//(i E j))
17. x,y:i,j:n//(i E j). (x Eb y) x = y
18. k: (n-1)
19. k E (n-1)
20. x: i,j:n//(i E j)
21. n-1 i,j:n//(i E j)
22. (x Eb (n-1))

f(g(x)) = x i,j:n//(i E j)

By:
Unfold `inv_funs` 10
THEN
Analyze 10
THEN
RWH add_composeC 0


Generated subgoal:

110. g o f = Id
11. f o g = Id
12. x:m. f(x) i,j:n//(i E j)
13. a:n. a E a
14. a,b:n. (a E b) (b E a)
15. a,b,c:n. (a E b) (b E c) (a E c)
16. x,y:i,j:n//(i E j). Dec(x = y)
17. Eb: (i,j:n//(i E j))(i,j:n//(i E j))
18. x,y:i,j:n//(i E j). (x Eb y) x = y
19. k: (n-1)
20. k E (n-1)
21. x: i,j:n//(i E j)
22. n-1 i,j:n//(i E j)
23. (x Eb (n-1))
(f o g)(x) = x i,j:n//(i E j)


About:
equalquotientnatural_numberapplyaddallfunctionsubtract
propimpliesandexistsmemberboolassert