Nuprl Lemma : binrel_ap_wf

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. ∀[a,b:T].  (a [r] b ∈ ℙ)


Proof




Definitions occuring in Statement :  binrel_ap: [r] b uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  binrel_ap: [r] b uall: [x:A]. B[x] member: t ∈ T prop:
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality isectElimination thin because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:T].    (a  [r]  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_00_39
Last ObjectModification: 2015_12_26-PM-11_26_40

Theory : gen_algebra_1


Home Index