Nuprl Lemma : irrefl_trans_imp_sasym

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (st_anti_sym(T;R)) supposing (trans(T;R) and irrefl(T;R))


Proof




Definitions occuring in Statement :  xxst_anti_sym: st_anti_sym(T;R) xxirrefl: irrefl(T;R) xxtrans: trans(T;E) uimplies: supposing a uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a xxtrans: trans(T;E) xxirrefl: irrefl(T;R) xxst_anti_sym: st_anti_sym(T;R) trans: Trans(T;x,y.E[x; y]) irrefl: Irrefl(T;x,y.E[x; y]) st_anti_sym: StAntiSym(T;x,y.R[x; y]) all: x:A. B[x] not: ¬A implies:  Q false: False and: P ∧ Q prop:
Lemmas referenced :  and_wf xxtrans_wf xxirrefl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation thin productElimination lemma_by_obid isectElimination applyEquality hypothesisEquality hypothesis independent_functionElimination voidElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (st\_anti\_sym(T;R))  supposing  (trans(T;R)  and  irrefl(T;R))



Date html generated: 2016_05_15-PM-00_01_49
Last ObjectModification: 2015_12_26-PM-11_25_56

Theory : gen_algebra_1


Home Index