Nuprl Lemma : sym_cl_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (E ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  sym_cl: E uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sym_cl: E uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (E\mrightleftharpoons{}  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_01_31
Last ObjectModification: 2015_12_26-PM-11_26_17

Theory : gen_algebra_1


Home Index