Nuprl Lemma : abdgrp_wf

AbDGrp ∈ 𝕌'


Proof




Definitions occuring in Statement :  abdgrp: AbDGrp member: t ∈ T universe: Type
Definitions unfolded in proof :  abdgrp: AbDGrp member: t ∈ T uall: [x:A]. B[x] abgrp: AbGrp grp: Group{i} mon: Mon prop:
Lemmas referenced :  abgrp_wf eqfun_p_wf grp_car_wf grp_eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality cut lemma_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality

Latex:
AbDGrp  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_15-PM-00_09_35
Last ObjectModification: 2015_12_26-PM-11_45_16

Theory : groups_1


Home Index