Nuprl Lemma : comb_for_compose_wf_for_mon_hom
λA,B,C,f,g,z. (g o f) ∈ A:IMonoid ⟶ B:IMonoid ⟶ C:IMonoid ⟶ f:MonHom(A,B) ⟶ g:MonHom(B,C) ⟶ (↓True) ⟶ MonHom(A,C)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
imon: IMonoid
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
imon: IMonoid
Lemmas referenced : 
compose_wf_for_mon_hom, 
squash_wf, 
true_wf, 
monoid_hom_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
setElimination, 
rename
Latex:
\mlambda{}A,B,C,f,g,z.  (g  o  f)  \mmember{}  A:IMonoid
{}\mrightarrow{}  B:IMonoid
{}\mrightarrow{}  C:IMonoid
{}\mrightarrow{}  f:MonHom(A,B)
{}\mrightarrow{}  g:MonHom(B,C)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  MonHom(A,C)
Date html generated:
2016_05_15-PM-00_10_36
Last ObjectModification:
2015_12_26-PM-11_44_33
Theory : groups_1
Home
Index