Nuprl Lemma : comb_for_compose_wf_for_mon_hom

λA,B,C,f,g,z. (g f) ∈ A:IMonoid ⟶ B:IMonoid ⟶ C:IMonoid ⟶ f:MonHom(A,B) ⟶ g:MonHom(B,C) ⟶ (↓True) ⟶ MonHom(A,C)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) imon: IMonoid compose: g squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  compose_wf_for_mon_hom squash_wf true_wf monoid_hom_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}A,B,C,f,g,z.  (g  o  f)  \mmember{}  A:IMonoid
{}\mrightarrow{}  B:IMonoid
{}\mrightarrow{}  C:IMonoid
{}\mrightarrow{}  f:MonHom(A,B)
{}\mrightarrow{}  g:MonHom(B,C)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  MonHom(A,C)



Date html generated: 2016_05_15-PM-00_10_36
Last ObjectModification: 2015_12_26-PM-11_44_33

Theory : groups_1


Home Index