Nuprl Lemma : comb_for_grp_leq_wf
λg,a,b,z. (a ≤ b) ∈ g:GrpSig ⟶ a:|g| ⟶ b:|g| ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
grp_leq: a ≤ b
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
grp_leq_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry
Latex:
\mlambda{}g,a,b,z.  (a  \mleq{}  b)  \mmember{}  g:GrpSig  {}\mrightarrow{}  a:|g|  {}\mrightarrow{}  b:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2016_05_15-PM-00_11_44
Last ObjectModification:
2015_12_26-PM-11_43_06
Theory : groups_1
Home
Index