Nuprl Lemma : comb_for_int_op_wf

λg,a,e,z. x(*;e;~) e ∈ g:Group{i} ⟶ a:ℤ ⟶ e:|g| ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  int_op: x(op;id;inv) e grp: Group{i} grp_inv: ~ grp_id: e grp_op: * grp_car: |g| squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: grp: Group{i} mon: Mon
Lemmas referenced :  int_op_wf squash_wf true_wf grp_car_wf grp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename intEquality

Latex:
\mlambda{}g,a,e,z.  a  x(*;e;\msim{})  e  \mmember{}  g:Group\{i\}  {}\mrightarrow{}  a:\mBbbZ{}  {}\mrightarrow{}  e:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|



Date html generated: 2016_05_15-PM-00_15_35
Last ObjectModification: 2015_12_26-PM-11_40_13

Theory : groups_1


Home Index