Nuprl Lemma : int_op_wf

[g:Group{i}]. ∀[a:ℤ]. ∀[e:|g|].  (a x(*;e;~) e ∈ |g|)


Proof




Definitions occuring in Statement :  int_op: x(op;id;inv) e grp: Group{i} grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  int_op: x(op;id;inv) e uall: [x:A]. B[x] member: t ∈ T grp: Group{i} mon: Mon all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} prop: imon: IMonoid nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  grp_car_wf grp_wf le_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf le_wf eqtt_to_assert assert_of_le_int lt_int_wf less_than_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf nat_op_wf grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin setElimination rename hypothesisEquality isect_memberEquality because_Cache intEquality natural_numberEquality lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality independent_functionElimination productElimination independent_isectElimination dependent_functionElimination lambdaEquality setEquality cumulativity dependent_set_memberEquality minusEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[g:Group\{i\}].  \mforall{}[a:\mBbbZ{}].  \mforall{}[e:|g|].    (a  x(*;e;\msim{})  e  \mmember{}  |g|)



Date html generated: 2017_10_01-AM-08_16_09
Last ObjectModification: 2017_02_28-PM-02_00_56

Theory : groups_1


Home Index