Nuprl Lemma : nat_op_wf

[g:IMonoid]. ∀[n:ℕ]. ∀[e:|g|].  (n x(*;e) e ∈ |g|)


Proof




Definitions occuring in Statement :  nat_op: x(op;id) e imon: IMonoid grp_id: e grp_op: * grp_car: |g| nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat_op: x(op;id) e uall: [x:A]. B[x] member: t ∈ T imon: IMonoid nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  itop_wf grp_car_wf grp_op_wf grp_id_wf int_seg_wf nat_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:\mBbbN{}].  \mforall{}[e:|g|].    (n  x(*;e)  e  \mmember{}  |g|)



Date html generated: 2016_05_15-PM-00_15_13
Last ObjectModification: 2015_12_26-PM-11_40_35

Theory : groups_1


Home Index