Nuprl Lemma : comb_for_itop_wf

λA,op,id,p,q,E,z. Π(op,id) p ≤ i < q. E[i] ∈ A:Type ⟶ op:(A ⟶ A ⟶ A) ⟶ id:A ⟶ p:ℤ ⟶ q:ℤ ⟶ E:({p..q-} ⟶ A) ⟶ (↓T\000Crue) ⟶ A


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] int_seg: {i..j-} so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  itop_wf squash_wf true_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality intEquality universeEquality

Latex:
\mlambda{}A,op,id,p,q,E,z.  \mPi{}(op,id)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  A:Type
{}\mrightarrow{}  op:(A  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
{}\mrightarrow{}  id:A
{}\mrightarrow{}  p:\mBbbZ{}
{}\mrightarrow{}  q:\mBbbZ{}
{}\mrightarrow{}  E:(\{p..q\msupminus{}\}  {}\mrightarrow{}  A)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  A



Date html generated: 2016_05_15-PM-00_14_34
Last ObjectModification: 2015_12_26-PM-11_40_57

Theory : groups_1


Home Index