Nuprl Lemma : comb_for_itop_wf
λA,op,id,p,q,E,z. Π(op,id) p ≤ i < q. E[i] ∈ A:Type ⟶ op:(A ⟶ A ⟶ A) ⟶ id:A ⟶ p:ℤ ⟶ q:ℤ ⟶ E:({p..q-} ⟶ A) ⟶ (↓T\000Crue) ⟶ A
Proof
Definitions occuring in Statement : 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
itop_wf, 
squash_wf, 
true_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
intEquality, 
universeEquality
Latex:
\mlambda{}A,op,id,p,q,E,z.  \mPi{}(op,id)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  A:Type
{}\mrightarrow{}  op:(A  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
{}\mrightarrow{}  id:A
{}\mrightarrow{}  p:\mBbbZ{}
{}\mrightarrow{}  q:\mBbbZ{}
{}\mrightarrow{}  E:(\{p..q\msupminus{}\}  {}\mrightarrow{}  A)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  A
Date html generated:
2016_05_15-PM-00_14_34
Last ObjectModification:
2015_12_26-PM-11_40_57
Theory : groups_1
Home
Index