Nuprl Lemma : comb_for_mon_when_wf

λg,b,p,z. (when b. p) ∈ g:IMonoid ⟶ b:𝔹 ⟶ p:|g| ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  mon_when: when b. p imon: IMonoid grp_car: |g| bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  mon_when_wf squash_wf true_wf grp_car_wf bool_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}g,b,p,z.  (when  b.  p)  \mmember{}  g:IMonoid  {}\mrightarrow{}  b:\mBbbB{}  {}\mrightarrow{}  p:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|



Date html generated: 2016_05_15-PM-00_18_30
Last ObjectModification: 2015_12_26-PM-11_38_06

Theory : groups_1


Home Index