Nuprl Lemma : comb_for_nat_op_wf
λg,n,e,z. n x(*;e) e ∈ g:IMonoid ⟶ n:ℕ ⟶ e:|g| ⟶ (↓True) ⟶ |g|
Proof
Definitions occuring in Statement : 
nat_op: n x(op;id) e
, 
imon: IMonoid
, 
grp_id: e
, 
grp_op: *
, 
grp_car: |g|
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
imon: IMonoid
Lemmas referenced : 
nat_op_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
nat_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
setElimination, 
rename
Latex:
\mlambda{}g,n,e,z.  n  x(*;e)  e  \mmember{}  g:IMonoid  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  e:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|
Date html generated:
2016_05_15-PM-00_15_16
Last ObjectModification:
2015_12_26-PM-11_40_27
Theory : groups_1
Home
Index