Nuprl Lemma : comb_for_nat_op_wf
λg,n,e,z. n x(*;e) e ∈ g:IMonoid ⟶ n:ℕ ⟶ e:|g| ⟶ (↓True) ⟶ |g|
Proof
Definitions occuring in Statement :
nat_op: n x(op;id) e
,
imon: IMonoid
,
grp_id: e
,
grp_op: *
,
grp_car: |g|
,
nat: ℕ
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
imon: IMonoid
Lemmas referenced :
nat_op_wf,
squash_wf,
true_wf,
grp_car_wf,
nat_wf,
imon_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
cut,
lemma_by_obid,
isectElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
setElimination,
rename
Latex:
\mlambda{}g,n,e,z. n x(*;e) e \mmember{} g:IMonoid {}\mrightarrow{} n:\mBbbN{} {}\mrightarrow{} e:|g| {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} |g|
Date html generated:
2016_05_15-PM-00_15_16
Last ObjectModification:
2015_12_26-PM-11_40_27
Theory : groups_1
Home
Index