Nuprl Lemma : comb_for_nat_op_wf

λg,n,e,z. x(*;e) e ∈ g:IMonoid ⟶ n:ℕ ⟶ e:|g| ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  nat_op: x(op;id) e imon: IMonoid grp_id: e grp_op: * grp_car: |g| nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  nat_op_wf squash_wf true_wf grp_car_wf nat_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}g,n,e,z.  n  x(*;e)  e  \mmember{}  g:IMonoid  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  e:|g|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|



Date html generated: 2016_05_15-PM-00_15_16
Last ObjectModification: 2015_12_26-PM-11_40_27

Theory : groups_1


Home Index