Nuprl Lemma : ocgrp_abdgrp
∀[g:OGrp]. (g ∈ AbDGrp)
Proof
Definitions occuring in Statement : 
ocgrp: OGrp
, 
abdgrp: AbDGrp
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ocgrp_subtype_abdgrp, 
ocgrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OGrp].  (g  \mmember{}  AbDGrp)
Date html generated:
2016_05_15-PM-00_13_15
Last ObjectModification:
2015_12_26-PM-11_41_45
Theory : groups_1
Home
Index