Nuprl Lemma : ocgrp_subtype_abdgrp

OGrp ⊆AbDGrp


Proof




Definitions occuring in Statement :  ocgrp: OGrp abdgrp: AbDGrp subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T abdgrp: AbDGrp all: x:A. B[x] ocgrp: OGrp ocmon: OCMon omon: OMon uall: [x:A]. B[x] and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B abgrp: AbGrp grp: Group{i}
Lemmas referenced :  ocgrp_subtype_abgrp omon_properties subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf inverse_wf grp_id_wf grp_inv_wf set_wf eqfun_p_wf ocgrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality dependent_set_memberEquality cut hypothesisEquality applyEquality introduction extract_by_obid hypothesis sqequalHypSubstitution sqequalRule dependent_functionElimination thin instantiate isectElimination setEquality productEquality setElimination rename because_Cache functionEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination cumulativity universeEquality independent_pairFormation addLevel levelHypothesis

Latex:
OGrp  \msubseteq{}r  AbDGrp



Date html generated: 2017_10_01-AM-08_15_12
Last ObjectModification: 2017_02_28-PM-02_00_21

Theory : groups_1


Home Index