Nuprl Lemma : subtype_rel_grp

GrpSig ⊆GrpSig{[i j]}


Proof




Definitions occuring in Statement :  grp_sig: GrpSig subtype_rel: A ⊆B
Definitions unfolded in proof :  grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  subtype_rel_product bool_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity universeEquality sqequalRule lambdaEquality productEquality functionEquality hypothesisEquality hypothesis independent_isectElimination lambdaFormation

Latex:
GrpSig  \msubseteq{}r  GrpSig\{[i  |  j]\}



Date html generated: 2016_05_15-PM-00_06_26
Last ObjectModification: 2015_12_26-PM-11_47_28

Theory : groups_1


Home Index