Nuprl Lemma : subtype_rel_grp
GrpSig ⊆r GrpSig{[i | j]}
Proof
Definitions occuring in Statement : 
grp_sig: GrpSig
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel_product, 
bool_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation
Latex:
GrpSig  \msubseteq{}r  GrpSig\{[i  |  j]\}
Date html generated:
2016_05_15-PM-00_06_26
Last ObjectModification:
2015_12_26-PM-11_47_28
Theory : groups_1
Home
Index