Step
*
1
2
1
2
of Lemma
bpa-equiv-iff-norm
1. p : {2...}
2. EquivRel(basic-padic(p);x,y.bpa-equiv(p;x;y))
3. ∀x:basic-padic(p). bpa-equiv(p;x;bpa-norm(p;x))
4. n : {1...}
5. a : p-adics(p)
6. m : ℕ
7. b : p-adics(p)
8. a = p^n(p) * b ∈ p-adics(p)
9. (a n) = 0 ∈ ℤ
⊢ if (a n =z 0) then <0, p-shift(p;a;n)> else let k,b = p-unitize(p;a;n) in <n - k, b> fi = <0, b> ∈ basic-padic(p)
BY
{ ((HypSubst' (-1) 0 THEN Reduce 0)
THEN Unfold `basic-padic` 0
THEN EqCDA
THEN InstLemma `p-mul-int-cancelation-1` [⌜p⌝;⌜n⌝;⌜p-shift(p;a;n)⌝;⌜b⌝]⋅
THEN Auto
THEN NthHypEqTrans (-3)
THEN Auto) }
Latex:
Latex:
1. p : \{2...\}
2. EquivRel(basic-padic(p);x,y.bpa-equiv(p;x;y))
3. \mforall{}x:basic-padic(p). bpa-equiv(p;x;bpa-norm(p;x))
4. n : \{1...\}
5. a : p-adics(p)
6. m : \mBbbN{}
7. b : p-adics(p)
8. a = p\^{}n(p) * b
9. (a n) = 0
\mvdash{} if (a n =\msubz{} 0) then ɘ, p-shift(p;a;n)> else let k,b = p-unitize(p;a;n) in <n - k, b> fi = ɘ, b>
By
Latex:
((HypSubst' (-1) 0 THEN Reduce 0)
THEN Unfold `basic-padic` 0
THEN EqCDA
THEN InstLemma `p-mul-int-cancelation-1` [\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}p-shift(p;a;n)\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THEN Auto
THEN NthHypEqTrans (-3)
THEN Auto)
Home
Index