Nuprl Lemma : bpa-equiv_transitivity
∀p:{2...}. ∀a,b,c:basic-padic(p). (bpa-equiv(p;a;b)
⇒ bpa-equiv(p;b;c)
⇒ bpa-equiv(p;a;c))
Proof
Definitions occuring in Statement :
bpa-equiv: bpa-equiv(p;x;y)
,
basic-padic: basic-padic(p)
,
int_upper: {i...}
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
trans: Trans(T;x,y.E[x; y])
Lemmas referenced :
bpa-equiv-equiv,
int_upper_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
productElimination,
hypothesis,
natural_numberEquality
Latex:
\mforall{}p:\{2...\}. \mforall{}a,b,c:basic-padic(p). (bpa-equiv(p;a;b) {}\mRightarrow{} bpa-equiv(p;b;c) {}\mRightarrow{} bpa-equiv(p;a;c))
Date html generated:
2018_05_21-PM-03_24_53
Last ObjectModification:
2018_05_19-AM-08_22_20
Theory : rings_1
Home
Index