Nuprl Lemma : comb_for_rng_sum_wf
λr,p,q,E,z. (Σ(r) p ≤ i < q. E[i]) ∈ r:Rng ⟶ p:ℤ ⟶ q:ℤ ⟶ E:({p..q-} ⟶ |r|) ⟶ (↓True) ⟶ |r|
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rng: Rng
Lemmas referenced : 
rng_sum_wf, 
squash_wf, 
true_wf, 
int_seg_wf, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
setElimination, 
rename, 
intEquality
Latex:
\mlambda{}r,p,q,E,z.  (\mSigma{}(r)  p  \mleq{}  i  <  q.  E[i])  \mmember{}  r:Rng  {}\mrightarrow{}  p:\mBbbZ{}  {}\mrightarrow{}  q:\mBbbZ{}  {}\mrightarrow{}  E:(\{p..q\msupminus{}\}  {}\mrightarrow{}  |r|)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |r|
Date html generated:
2016_05_15-PM-00_22_04
Last ObjectModification:
2015_12_27-AM-00_01_35
Theory : rings_1
Home
Index