Step
*
2
1
1
1
1
of Lemma
p-inv_wf
1. p : {p:{2...}| prime(p)}
2. a : p-adics(p)
3. ¬((a 1) = 0 ∈ ℤ)
4. n : ℕ+
5. v : ℕp^(n + 1)
6. (v * (a (n + 1))) ≡ 1 mod p^(n + 1)
7. v1 : ℕp^n
8. (v1 * (a n)) ≡ 1 mod p^n
⊢ v ≡ v1 mod p^n
BY
{ (Assert (a (n + 1)) ≡ (a n) mod p^n BY
(D 2 THEN Unhide THEN Auto)) }
1
1. p : {p:{2...}| prime(p)}
2. a : p-adics(p)
3. ¬((a 1) = 0 ∈ ℤ)
4. n : ℕ+
5. v : ℕp^(n + 1)
6. (v * (a (n + 1))) ≡ 1 mod p^(n + 1)
7. v1 : ℕp^n
8. (v1 * (a n)) ≡ 1 mod p^n
9. (a (n + 1)) ≡ (a n) mod p^n
⊢ v ≡ v1 mod p^n
Latex:
Latex:
1. p : \{p:\{2...\}| prime(p)\}
2. a : p-adics(p)
3. \mneg{}((a 1) = 0)
4. n : \mBbbN{}\msupplus{}
5. v : \mBbbN{}p\^{}(n + 1)
6. (v * (a (n + 1))) \mequiv{} 1 mod p\^{}(n + 1)
7. v1 : \mBbbN{}p\^{}n
8. (v1 * (a n)) \mequiv{} 1 mod p\^{}n
\mvdash{} v \mequiv{} v1 mod p\^{}n
By
Latex:
(Assert (a (n + 1)) \mequiv{} (a n) mod p\^{}n BY
(D 2 THEN Unhide THEN Auto))
Home
Index