Nuprl Lemma : loset_connex
∀s:LOSet. ∀x,y:|s|.  ((x ≤ y) ∨ (y ≤ x))
Proof
Definitions occuring in Statement : 
loset: LOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
connex: Connex(T;x,y.R[x; y])
Lemmas referenced : 
loset_properties, 
loset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}s:LOSet.  \mforall{}x,y:|s|.    ((x  \mleq{}  y)  \mvee{}  (y  \mleq{}  x))
Date html generated:
2016_05_15-PM-00_05_27
Last ObjectModification:
2015_12_26-PM-11_27_40
Theory : sets_1
Home
Index