Nuprl Lemma : loset_connex

s:LOSet. ∀x,y:|s|.  ((x ≤ y) ∨ (y ≤ x))


Proof




Definitions occuring in Statement :  loset: LOSet set_leq: a ≤ b set_car: |p| all: x:A. B[x] or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T connex: Connex(T;x,y.R[x; y])
Lemmas referenced :  loset_properties loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis

Latex:
\mforall{}s:LOSet.  \mforall{}x,y:|s|.    ((x  \mleq{}  y)  \mvee{}  (y  \mleq{}  x))



Date html generated: 2016_05_15-PM-00_05_27
Last ObjectModification: 2015_12_26-PM-11_27_40

Theory : sets_1


Home Index