Nuprl Lemma : subtype_rel_poset

PosetSig ⊆PosetSig{[i j]}


Proof




Definitions occuring in Statement :  poset_sig: PosetSig subtype_rel: A ⊆B
Definitions unfolded in proof :  poset_sig: PosetSig uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  subtype_rel_product bool_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity universeEquality sqequalRule lambdaEquality productEquality functionEquality hypothesisEquality hypothesis independent_isectElimination lambdaFormation

Latex:
PosetSig  \msubseteq{}r  PosetSig\{[i  |  j]\}



Date html generated: 2016_05_15-PM-00_03_56
Last ObjectModification: 2015_12_26-PM-11_28_52

Theory : sets_1


Home Index