Nuprl Lemma : algebra_sig_inc
∀A:Type. (algebra_sig{i:l}(A) ⊆r algebra_sig{[i | j]:l}(A))
Proof
Definitions occuring in Statement : 
algebra_sig: algebra_sig{i:l}(A)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_algebra
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
lambdaEquality, 
hypothesis, 
universeEquality
Latex:
\mforall{}A:Type.  (algebra\_sig\{i:l\}(A)  \msubseteq{}r  algebra\_sig\{[i  |  j]:l\}(A))
Date html generated:
2019_10_16-PM-00_58_32
Last ObjectModification:
2018_09_17-PM-06_21_13
Theory : algebras_1
Home
Index