Nuprl Lemma : algebra_sig_inc

A:Type. (algebra_sig{i:l}(A) ⊆algebra_sig{[i j]:l}(A))


Proof




Definitions occuring in Statement :  algebra_sig: algebra_sig{i:l}(A) subtype_rel: A ⊆B all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_algebra
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality because_Cache independent_functionElimination lambdaEquality hypothesis universeEquality

Latex:
\mforall{}A:Type.  (algebra\_sig\{i:l\}(A)  \msubseteq{}r  algebra\_sig\{[i  |  j]:l\}(A))



Date html generated: 2019_10_16-PM-00_58_32
Last ObjectModification: 2018_09_17-PM-06_21_13

Theory : algebras_1


Home Index