Nuprl Lemma : subtype_rel_algebra
∀A1,A2:Type.  ((A1 ⊆r A2) 
⇒ (algebra_sig{i:l}(A2) ⊆r algebra_sig{[i | j]:l}(A1)))
Proof
Definitions occuring in Statement : 
algebra_sig: algebra_sig{i:l}(A)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_product, 
bool_wf, 
unit_wf2, 
subtype_rel_dep_function, 
subtype_rel_self, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
universeEquality, 
lambdaEquality, 
productEquality, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}A1,A2:Type.    ((A1  \msubseteq{}r  A2)  {}\mRightarrow{}  (algebra\_sig\{i:l\}(A2)  \msubseteq{}r  algebra\_sig\{[i  |  j]:l\}(A1)))
Date html generated:
2016_05_16-AM-07_26_14
Last ObjectModification:
2015_12_28-PM-05_08_35
Theory : algebras_1
Home
Index