Nuprl Lemma : subtype_rel_algebra

A1,A2:Type.  ((A1 ⊆A2)  (algebra_sig{i:l}(A2) ⊆algebra_sig{[i j]:l}(A1)))


Proof




Definitions occuring in Statement :  algebra_sig: algebra_sig{i:l}(A) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_product bool_wf unit_wf2 subtype_rel_dep_function subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity universeEquality lambdaEquality productEquality functionEquality hypothesisEquality hypothesis unionEquality independent_isectElimination because_Cache

Latex:
\mforall{}A1,A2:Type.    ((A1  \msubseteq{}r  A2)  {}\mRightarrow{}  (algebra\_sig\{i:l\}(A2)  \msubseteq{}r  algebra\_sig\{[i  |  j]:l\}(A1)))



Date html generated: 2016_05_16-AM-07_26_14
Last ObjectModification: 2015_12_28-PM-05_08_35

Theory : algebras_1


Home Index