Nuprl Lemma : massoc_wf

g:GrpSig. ∀a,b:|g|.  (a b ∈ ℙ)


Proof




Definitions occuring in Statement :  massoc: b prop: all: x:A. B[x] member: t ∈ T grp_car: |g| grp_sig: GrpSig
Definitions unfolded in proof :  massoc: b all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  symmetrize_wf grp_car_wf mdivides_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis lambdaEquality dependent_functionElimination

Latex:
\mforall{}g:GrpSig.  \mforall{}a,b:|g|.    (a  \msim{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_43_09
Last ObjectModification: 2015_12_28-PM-05_54_50

Theory : factor_1


Home Index