Nuprl Lemma : matom_ty_wf

g:GrpSig. (Atom{g} ∈ Type)


Proof




Definitions occuring in Statement :  matom_ty: Atom{g} all: x:A. B[x] member: t ∈ T universe: Type grp_sig: GrpSig
Definitions unfolded in proof :  matom_ty: Atom{g} all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  grp_car_wf matomic_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination

Latex:
\mforall{}g:GrpSig.  (Atom\{g\}  \mmember{}  Type)



Date html generated: 2016_05_16-AM-07_44_22
Last ObjectModification: 2015_12_28-PM-05_53_49

Theory : factor_1


Home Index