Step
*
1
1
1
of Lemma
mreducible_elim
1. g : IAbMonoid
2. Cancel(|g|;|g|;*)
3. a : |g|
4. b : |g|
5. ¬(g-unit(b))
6. c : |g|
7. ¬(g-unit(c))
8. a = (b * c) ∈ |g|
9. ¬(g-unit(b))
⊢ b p| a
BY
{ D 0 }
1
1. g : IAbMonoid
2. Cancel(|g|;|g|;*)
3. a : |g|
4. b : |g|
5. ¬(g-unit(b))
6. c : |g|
7. ¬(g-unit(c))
8. a = (b * c) ∈ |g|
9. ¬(g-unit(b))
⊢ b | a
2
1. g : IAbMonoid
2. Cancel(|g|;|g|;*)
3. a : |g|
4. b : |g|
5. ¬(g-unit(b))
6. c : |g|
7. ¬(g-unit(c))
8. a = (b * c) ∈ |g|
9. ¬(g-unit(b))
⊢ ¬(a | b)
Latex:
Latex:
1.  g  :  IAbMonoid
2.  Cancel(|g|;|g|;*)
3.  a  :  |g|
4.  b  :  |g|
5.  \mneg{}(g-unit(b))
6.  c  :  |g|
7.  \mneg{}(g-unit(c))
8.  a  =  (b  *  c)
9.  \mneg{}(g-unit(b))
\mvdash{}  b  p|  a
By
Latex:
D  0
Home
Index