Nuprl Lemma : mreducible_elim
∀g:IAbMonoid. (Cancel(|g|;|g|;*)
⇒ (∀a:|g|. (Reducible(a)
⇐⇒ ∃b:|g|. ((¬(g-unit(b))) ∧ (b p| a)))))
Proof
Definitions occuring in Statement :
mreducible: Reducible(a)
,
mpdivides: a p| b
,
munit: g-unit(u)
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
iabmonoid: IAbMonoid
,
grp_op: *
,
grp_car: |g|
,
cancel: Cancel(T;S;op)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
mreducible: Reducible(a)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
iabmonoid: IAbMonoid
,
imon: IMonoid
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
infix_ap: x f y
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
mpdivides: a p| b
,
mdivides: b | a
,
not: ¬A
,
false: False
,
munit: g-unit(u)
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
Lemmas referenced :
grp_car_wf,
cancel_wf,
grp_op_wf,
iabmonoid_wf,
exists_over_and_r,
not_wf,
munit_wf,
equal_wf,
infix_ap_wf,
exists_wf,
iff_wf,
mpdivides_wf,
mdivides_wf,
mproper_div_cond,
squash_wf,
true_wf,
mon_assoc,
iff_weakening_equal,
mon_ident
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
because_Cache,
addLevel,
productElimination,
independent_pairFormation,
impliesFunctionality,
existsFunctionality,
dependent_functionElimination,
sqequalRule,
lambdaEquality,
productEquality,
independent_functionElimination,
applyEquality,
existsLevelFunctionality,
dependent_pairFormation,
equalitySymmetry,
hyp_replacement,
applyLambdaEquality,
voidElimination,
imageElimination,
equalityTransitivity,
universeEquality,
equalityUniverse,
levelHypothesis,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination
Latex:
\mforall{}g:IAbMonoid
(Cancel(|g|;|g|;*) {}\mRightarrow{} (\mforall{}a:|g|. (Reducible(a) \mLeftarrow{}{}\mRightarrow{} \mexists{}b:|g|. ((\mneg{}(g-unit(b))) \mwedge{} (b p| a)))))
Date html generated:
2017_10_01-AM-09_58_11
Last ObjectModification:
2017_03_03-PM-00_59_48
Theory : factor_1
Home
Index