Nuprl Lemma : mreducible_elim

g:IAbMonoid. (Cancel(|g|;|g|;*)  (∀a:|g|. (Reducible(a) ⇐⇒ ∃b:|g|. ((¬(g-unit(b))) ∧ (b p| a)))))


Proof




Definitions occuring in Statement :  mreducible: Reducible(a) mpdivides: p| b munit: g-unit(u) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mreducible: Reducible(a) member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid prop: iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] exists: x:A. B[x] rev_implies:  Q cand: c∧ B mpdivides: p| b mdivides: a not: ¬A false: False munit: g-unit(u) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  grp_car_wf cancel_wf grp_op_wf iabmonoid_wf exists_over_and_r not_wf munit_wf equal_wf infix_ap_wf exists_wf iff_wf mpdivides_wf mdivides_wf mproper_div_cond squash_wf true_wf mon_assoc iff_weakening_equal mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache addLevel productElimination independent_pairFormation impliesFunctionality existsFunctionality dependent_functionElimination sqequalRule lambdaEquality productEquality independent_functionElimination applyEquality existsLevelFunctionality dependent_pairFormation equalitySymmetry hyp_replacement applyLambdaEquality voidElimination imageElimination equalityTransitivity universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a:|g|.  (Reducible(a)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:|g|.  ((\mneg{}(g-unit(b)))  \mwedge{}  (b  p|  a)))))



Date html generated: 2017_10_01-AM-09_58_11
Last ObjectModification: 2017_03_03-PM-00_59_48

Theory : factor_1


Home Index