Nuprl Lemma : mreducible_elim
∀g:IAbMonoid. (Cancel(|g|;|g|;*) ⇒ (∀a:|g|. (Reducible(a) ⇐⇒ ∃b:|g|. ((¬(g-unit(b))) ∧ (b p| a)))))
Proof
Definitions occuring in Statement : 
mreducible: Reducible(a), 
mpdivides: a p| b, 
munit: g-unit(u), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iabmonoid: IAbMonoid, 
grp_op: *, 
grp_car: |g|, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
mreducible: Reducible(a), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
infix_ap: x f y, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
mpdivides: a p| b, 
mdivides: b | a, 
not: ¬A, 
false: False, 
munit: g-unit(u), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
grp_car_wf, 
cancel_wf, 
grp_op_wf, 
iabmonoid_wf, 
exists_over_and_r, 
not_wf, 
munit_wf, 
equal_wf, 
infix_ap_wf, 
exists_wf, 
iff_wf, 
mpdivides_wf, 
mdivides_wf, 
mproper_div_cond, 
squash_wf, 
true_wf, 
mon_assoc, 
iff_weakening_equal, 
mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
existsFunctionality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
productEquality, 
independent_functionElimination, 
applyEquality, 
existsLevelFunctionality, 
dependent_pairFormation, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
voidElimination, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a:|g|.  (Reducible(a)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:|g|.  ((\mneg{}(g-unit(b)))  \mwedge{}  (b  p|  a)))))
Date html generated:
2017_10_01-AM-09_58_11
Last ObjectModification:
2017_03_03-PM-00_59_48
Theory : factor_1
Home
Index