Nuprl Lemma : munit_wf
∀g:GrpSig. ∀a:|g|.  (g-unit(a) ∈ ℙ)
Proof
Definitions occuring in Statement : 
munit: g-unit(u)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
grp_car: |g|
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
munit: g-unit(u)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
mdivides_wf, 
grp_id_wf, 
grp_car_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis
Latex:
\mforall{}g:GrpSig.  \mforall{}a:|g|.    (g-unit(a)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-07_43_07
Last ObjectModification:
2015_12_28-PM-05_54_49
Theory : factor_1
Home
Index