Nuprl Lemma : munit_wf

g:GrpSig. ∀a:|g|.  (g-unit(a) ∈ ℙ)


Proof




Definitions occuring in Statement :  munit: g-unit(u) prop: all: x:A. B[x] member: t ∈ T grp_car: |g| grp_sig: GrpSig
Definitions unfolded in proof :  munit: g-unit(u) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  mdivides_wf grp_id_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis

Latex:
\mforall{}g:GrpSig.  \mforall{}a:|g|.    (g-unit(a)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_43_07
Last ObjectModification: 2015_12_28-PM-05_54_49

Theory : factor_1


Home Index