Nuprl Lemma : exists_over_and_r

[T:Type]. ∀[A:ℙ]. ∀[B:T ⟶ ℙ].  (∃x:T. (A ∧ B[x]) ⇐⇒ A ∧ (∃x:T. B[x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin hypothesis dependent_pairFormation hypothesisEquality applyEquality cut introduction extract_by_obid isectElimination sqequalRule lambdaEquality productEquality cumulativity universeEquality because_Cache Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType

Latex:
\mforall{}[T:Type].  \mforall{}[A:\mBbbP{}].  \mforall{}[B:T  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}x:T.  (A  \mwedge{}  B[x])  \mLeftarrow{}{}\mRightarrow{}  A  \mwedge{}  (\mexists{}x:T.  B[x]))



Date html generated: 2019_06_20-AM-11_16_30
Last ObjectModification: 2018_09_26-AM-10_01_15

Theory : core_2


Home Index