Nuprl Lemma : exists_over_and_r
∀[T:Type]. ∀[A:ℙ]. ∀[B:T ⟶ ℙ].  (∃x:T. (A ∧ B[x]) 
⇐⇒ A ∧ (∃x:T. B[x]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
dependent_pairFormation, 
hypothesisEquality, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType
Latex:
\mforall{}[T:Type].  \mforall{}[A:\mBbbP{}].  \mforall{}[B:T  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}x:T.  (A  \mwedge{}  B[x])  \mLeftarrow{}{}\mRightarrow{}  A  \mwedge{}  (\mexists{}x:T.  B[x]))
Date html generated:
2019_06_20-AM-11_16_30
Last ObjectModification:
2018_09_26-AM-10_01_15
Theory : core_2
Home
Index