Nuprl Lemma : mproper_div_cond
∀g:IAbMonoid. (Cancel(|g|;|g|;*) 
⇒ (∀a,b:|g|.  (((a * b) | a) 
⇒ (g-unit(b)))))
Proof
Definitions occuring in Statement : 
munit: g-unit(u)
, 
mdivides: b | a
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
mdivides: b | a
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cancel: Cancel(T;S;op)
, 
munit: g-unit(u)
Lemmas referenced : 
mdivides_wf, 
grp_op_wf, 
grp_car_wf, 
cancel_wf, 
iabmonoid_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_assoc, 
iff_weakening_equal, 
mon_ident, 
grp_id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
because_Cache, 
productElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
dependent_pairFormation
Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a,b:|g|.    (((a  *  b)  |  a)  {}\mRightarrow{}  (g-unit(b)))))
Date html generated:
2017_10_01-AM-09_58_07
Last ObjectModification:
2017_03_03-PM-00_59_27
Theory : factor_1
Home
Index