Nuprl Lemma : mproper_div_cond

g:IAbMonoid. (Cancel(|g|;|g|;*)  (∀a,b:|g|.  (((a b) a)  (g-unit(b)))))


Proof




Definitions occuring in Statement :  munit: g-unit(u) mdivides: a infix_ap: y all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid infix_ap: y uall: [x:A]. B[x] mdivides: a exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cancel: Cancel(T;S;op) munit: g-unit(u)
Lemmas referenced :  mdivides_wf grp_op_wf grp_car_wf cancel_wf iabmonoid_wf equal_wf squash_wf true_wf mon_assoc iff_weakening_equal mon_ident grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis applyEquality isectElimination because_Cache productElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination dependent_pairFormation

Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a,b:|g|.    (((a  *  b)  |  a)  {}\mRightarrow{}  (g-unit(b)))))



Date html generated: 2017_10_01-AM-09_58_07
Last ObjectModification: 2017_03_03-PM-00_59_27

Theory : factor_1


Home Index