Step
*
1
1
1
of Lemma
posint_fact_exists
1. i : ℕ+
2. as : Atom{<ℤ+,*>} List
3. (∃c:ℕ+. ((Π as) = (i * c) ∈ ℕ+)) ∧ (∃c:ℕ+. (i = ((Π as) * c) ∈ ℕ+))
⊢ ∃ps:{j:ℕ+| prime(j)} List [(i = (Π ps) ∈ ℤ)]
BY
{ ((RWH (RevLemmaC `divides_nchar`) 3) THENA Auto)
THEN ((Try (BLemma `mul_bounds_1b`)) THENA Auto) }
1
1. i : ℕ+
2. as : Atom{<ℤ+,*>} List
3. (i | (Π as)) ∧ ((Π as) | i)
⊢ ∃ps:{j:ℕ+| prime(j)} List [(i = (Π ps) ∈ ℤ)]
Latex:
Latex:
1. i : \mBbbN{}\msupplus{}
2. as : Atom\{<\mBbbZ{}\msupplus{},*>\} List
3. (\mexists{}c:\mBbbN{}\msupplus{}. ((\mPi{} as) = (i * c))) \mwedge{} (\mexists{}c:\mBbbN{}\msupplus{}. (i = ((\mPi{} as) * c)))
\mvdash{} \mexists{}ps:\{j:\mBbbN{}\msupplus{}| prime(j)\} List [(i = (\mPi{} ps))]
By
Latex:
((RWH (RevLemmaC `divides\_nchar`) 3) THENA Auto)
THEN ((Try (BLemma `mul\_bounds\_1b`)) THENA Auto)
Home
Index