Nuprl Lemma : posint_fact_exists
∀i:ℕ+. (∃ps:{j:ℕ+| prime(j)}  List [(i = (Π ps) ∈ ℤ)])
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>, 
mon_reduce: mon_reduce, 
prime: prime(a), 
list: T List, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
set: {x:A| B[x]} , 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
posint_mul_mon: <ℤ+,*>, 
grp_car: |g|, 
pi1: fst(t), 
exists: ∃x:A. B[x], 
massoc: a ~ b, 
mdivides: b | a, 
symmetrize: Symmetrize(x,y.R[x; y];a;b), 
grp_op: *, 
pi2: snd(t), 
infix_ap: x f y, 
and: P ∧ Q, 
matom_ty: Atom{g}, 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assoced: a ~ b, 
sq_exists: ∃x:A [B[x]], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
matomic: Atomic(a), 
mreducible: Reducible(a), 
munit: g-unit(u), 
grp_id: e, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
atomic: atomic(a), 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
reducible: reducible(a), 
gt: i > j, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
or: P ∨ Q, 
cand: A c∧ B
Lemmas referenced : 
nat_plus_wf, 
mfact_exists_a, 
posint_mul_mon_wf, 
abmonoid_subtype_iabmonoid, 
posint_cancel, 
posint_well_fnd, 
posint_reduc_dec, 
grp_car_wf, 
mon_subtype_grp_sig, 
abmonoid_subtype_mon, 
subtype_rel_transitivity, 
abmonoid_wf, 
mon_wf, 
grp_sig_wf, 
posint_unit_dec, 
divides_nchar, 
mon_reduce_wf, 
iabmonoid_subtype_imon, 
iabmonoid_wf, 
imon_wf, 
subtype_rel_list, 
matom_ty_wf, 
subtype_rel_self, 
assoced_nelim, 
nat_plus_subtype_nat, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
list_subtype_base, 
prime_wf, 
matomic_wf, 
subtype_rel_sets, 
divides_wf, 
not_wf, 
exists_wf, 
equal-wf-base, 
atomic_imp_prime, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
assoced_wf, 
reducible_wf, 
int_nzero_properties, 
decidable__lt, 
intformnot_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_term_value_mul_lemma, 
pos_mul_arg_bounds, 
unit_chars, 
one_divs_any, 
decidable__equal_int, 
itermMinus_wf, 
int_term_value_minus_lemma, 
divides_invar_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesisEquality, 
isectElimination, 
instantiate, 
independent_isectElimination, 
because_Cache, 
productElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
independent_pairFormation, 
promote_hyp, 
dependent_set_memberFormation_alt, 
equalityIsType4, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
setEquality, 
setIsType, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
dependent_pairFormation_alt, 
productIsType, 
multiplyEquality, 
voidElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
unionElimination, 
minusEquality
Latex:
\mforall{}i:\mBbbN{}\msupplus{}.  (\mexists{}ps:\{j:\mBbbN{}\msupplus{}|  prime(j)\}    List  [(i  =  (\mPi{}  ps))])
Date html generated:
2019_10_16-PM-01_06_22
Last ObjectModification:
2018_10_08-AM-10_50_48
Theory : factor_1
Home
Index