Nuprl Lemma : posint_fact_exists

i:ℕ+(∃ps:{j:ℕ+prime(j)}  List [(i (Π ps) ∈ ℤ)])


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> mon_reduce: mon_reduce prime: prime(a) list: List nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q uall: [x:A]. B[x] guard: {T} uimplies: supposing a posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) exists: x:A. B[x] massoc: b mdivides: a symmetrize: Symmetrize(x,y.R[x; y];a;b) grp_op: * pi2: snd(t) infix_ap: y and: P ∧ Q matom_ty: Atom{g} nat_plus: + iff: ⇐⇒ Q rev_implies:  Q assoced: b sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] so_apply: x[s] prop: matomic: Atomic(a) mreducible: Reducible(a) munit: g-unit(u) grp_id: e not: ¬A less_than: a < b squash: T less_than': less_than'(a;b) true: True atomic: atomic(a) false: False satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top reducible: reducible(a) gt: i > j int_nzero: -o nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q cand: c∧ B
Lemmas referenced :  nat_plus_wf mfact_exists_a posint_mul_mon_wf abmonoid_subtype_iabmonoid posint_cancel posint_well_fnd posint_reduc_dec grp_car_wf mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf posint_unit_dec divides_nchar mon_reduce_wf iabmonoid_subtype_imon iabmonoid_wf imon_wf subtype_rel_list matom_ty_wf subtype_rel_self assoced_nelim nat_plus_subtype_nat set_subtype_base less_than_wf int_subtype_base list_subtype_base prime_wf matomic_wf subtype_rel_sets divides_wf not_wf exists_wf equal-wf-base atomic_imp_prime nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf assoced_wf reducible_wf int_nzero_properties decidable__lt intformnot_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_mul_lemma pos_mul_arg_bounds unit_chars one_divs_any decidable__equal_int itermMinus_wf int_term_value_minus_lemma divides_invar_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin applyEquality sqequalRule independent_functionElimination hypothesisEquality isectElimination instantiate independent_isectElimination because_Cache productElimination lambdaEquality_alt setElimination rename independent_pairFormation promote_hyp dependent_set_memberFormation_alt equalityIsType4 inhabitedIsType equalityTransitivity equalitySymmetry intEquality natural_numberEquality baseApply closedConclusion baseClosed setEquality setIsType dependent_set_memberEquality_alt imageMemberEquality dependent_pairFormation_alt productIsType multiplyEquality voidElimination approximateComputation int_eqEquality isect_memberEquality_alt unionElimination minusEquality

Latex:
\mforall{}i:\mBbbN{}\msupplus{}.  (\mexists{}ps:\{j:\mBbbN{}\msupplus{}|  prime(j)\}    List  [(i  =  (\mPi{}  ps))])



Date html generated: 2019_10_16-PM-01_06_22
Last ObjectModification: 2018_10_08-AM-10_50_48

Theory : factor_1


Home Index